Research

My recent research focuses on multigraded syzygies, in particular virtual resolutions. But I also have a strong interest in syzygies more broadly as well as connections between Algebraic Geometry, Commutative Algebra, and Combinatorics.

My research has blended combinatorial, computation, algebraic techniques to study syzygies. This includes a particular focus on monomial ideals as well as toric varieties.

Papers and Preprints

See also: https://arxiv.org/a/yang_j_7.html

  1. Conditions for virtually Cohen--Macaulay simplicial complexes
    Adam Van Tuyl and Jay Yang
  2. CellularResolutions M2 package
    Aleksandra Sobieska and Jay Yang
  3. Hadamard products and binomial ideals
    Büşra Atar, Kieran Bhaskara, Adrian Cook, Sergio Da Silva, Megumi Harada, Jenna Rajchgot, Adam Van Tuyl, Runyue Wang, and Jay Yang
  4. Syzygies of P1×P1: data and conjectures
    Juliette Bruce, Daniel Corey, Daniel Erman, Steve Goldstein, Robert P. Laudone, and Jay Yang
  5. Homological and combinatorial aspects of virtually Cohen--Macaulay sheaves
    Christine Berkesch, Michael C. Loper, Patricia Klein, and Jay Yang
  6. Combinatorial aspects of virtually Cohen--Macaulay sheaves
    Christine Berkesch, Michael C. Loper, Patricia Klein, and Jay Yang
  7. Asymptotic degree of random monomial ideals
    Lily Silverstein, Dane Wilburne, and Jay Yang
  8. Characteristic dependence of syzygies of random monomial ideals
    Caitlyn Booms, Daniel Erman, and Jay Yang
  9. Virtual resolutions of monomial ideals on toric varieties
    Jay Yang
  10. The SchurVeronese package in Macaulay2
    Juliette Bruce, Daniel Erman, Steve Goldstein, and Jay Yang
  11. Conjectures and computations about Veronese syzygies
    Juliette Bruce, Daniel Erman, Steve Goldstein, and Jay Yang
  12. Random flag complexes and asymptotics syzygies
    Daniel Erman and Jay Yang
  13. Random toric surfaces and a threshold for smoothness
    Jay Yang