My recent research focuses on multigraded syzygies, in particular
virtual resolutions. But I also have a strong interest in syzygies more
broadly as well as connections between Algebraic Geometry, Commutative
Algebra, and Combinatorics.
My research has blended combinatorial, computation, algebraic
techniques to study syzygies. This includes a particular focus on
monomial ideals as well as toric varieties.
-
Conditions for virtually Cohen--Macaulay simplicial complexes
Adam Van Tuyl and Jay Yang
-
CellularResolutions M2 package
Aleksandra Sobieska and Jay Yang
-
Hadamard products and binomial ideals
Büşra Atar, Kieran Bhaskara, Adrian Cook, Sergio Da Silva, Megumi Harada, Jenna Rajchgot, Adam Van Tuyl, Runyue Wang, and Jay Yang
-
Syzygies of P1×P1: data and conjectures
Juliette Bruce, Daniel Corey, Daniel Erman, Steve Goldstein, Robert P. Laudone, and Jay Yang
-
Homological and combinatorial aspects of virtually Cohen--Macaulay sheaves
Transactions of the London Mathematics Society
DOI
arXiv
Christine Berkesch, Michael C. Loper, Patricia Klein, and Jay Yang
-
Combinatorial aspects of virtually Cohen--Macaulay sheaves
Séminaire Lotharingien de Combinatoire
Christine Berkesch, Michael C. Loper, Patricia Klein, and Jay Yang
-
Asymptotic degree of random monomial ideals
Journal of Commutative Algebra
DOI
arXiv
Lily Silverstein, Dane Wilburne, and Jay Yang
-
Characteristic dependence of syzygies of random monomial ideals
SIAM Journal on Discrete Mathematics
DOI
arXiv
Caitlyn Booms, Daniel Erman, and Jay Yang
-
Virtual resolutions of monomial ideals on toric varieties
Proceedings of the AMS Series B
DOI
arXiv
Jay Yang
-
The SchurVeronese package in Macaulay2
Juliette Bruce, Daniel Erman, Steve Goldstein, and Jay Yang
-
Conjectures and computations about Veronese syzygies
Juliette Bruce, Daniel Erman, Steve Goldstein, and Jay Yang
-
Random flag complexes and asymptotics syzygies
Daniel Erman and Jay Yang
-
Random toric surfaces and a threshold for smoothness
Jay Yang